Estimating the Deep Overturning Transport Variability at 26°N Using Bottom Pressure Recorders
نویسندگان
چکیده
منابع مشابه
Aliasing of high-frequency variability by altimetry: Evaluation from bottom pressure recorders
In spectra computed from bottom pressure records, 18% to 63% of non-tidal energy is associated with frequencies greater than 1 cycle per 20 days, the approximate Nyquist frequency for the TOPEX/Poseidon (T/P) satellite. Since bottom pressure measurements are correlated with coincident sea surface height measurements from the T/P satellite, hourly bottom pressure data are used here to characteri...
متن کاملBias and variability in blood pressure measurement with ambulatory recorders.
This study sought to determine whether patient characteristics such as age, sex, blood pressure, and pulse pressure differently affect the accuracy of an oscillometric (SpaceLabs 90207) and a microphonic (TM2420 version 7) blood pressure monitor. Blood pressure recorded by two oscillometric and two microphonic ambulatory monitors was compared with simultaneous readings by two pairs of trained, ...
متن کاملFreshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the maj...
متن کاملestimating claims reserves using ibnr reserves
شرکت های بیمه در قبال بیمه گذاران متعهد می شوند که به ازای دریافت حق بیمه، خسارت وارده به بیمه گذاران را جبران نمایند. بنابراین بیمه گر همیشه مبالغی را بر عهده دارد که متعلق به بیمه گذاران است و مربوط به تعهدات آینده می باشد. این مبالغ را ذخایر فنی یا technical reserves گویند. بیمه گر موظف است در پایان سال مالی، هنگام بستن حساب ها، ذخایر فنی را محاسبه و نگهداری کند. پس از وقوع خسارت، بیمه گذار ...
Bottom-up Deep Learning using the Hebbian Principle
The “fire together, wire together” Hebbian learning model is a central principle in neuroscience, but, surprisingly, it has found limited applicability in modern machine learning. In this paper, we show that neuro-plausible variants of competitive Hebbian learning provide a promising foundation for bottom-up deep learning. We propose an unsupervised learning algorithm termed Adaptive Hebbian Le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Oceans
سال: 2019
ISSN: 2169-9275,2169-9291
DOI: 10.1029/2018jc014221